Programming and

Mathematics

Vilém Vychodil
PM Books s.r.o., 2023

Programming and Mathematics A1

Vilém Vychodil
PM Books s.r.o., 2023

Programming and Mathematics A1

Author: Vilém Vychodil
Original title: Programování a matematika A1
Original publisher: PM Books s.r.o.
Translation: Nicola Catherine Fořtová, Vilém Vychodil
Illustrations: Monika Klimková

Typesetting and graphic design: Vilém Vychodil
Cover design: Vilém Vychodil

Published by: PM Books s.r.o., Dittrichova 346/4, Nové Město, 12000 Praha 2, CZ (https://prog-mat.com)
Print: Lulu Press, Inc., 627 Davis Drive Suite 300, Morrisville, NC 27560, USA (https://lulu.com)

All rights reserved. No part of this publication may be reproduced or distributed in any manner without the written permission of the publisher, except as expressly permitted by law.

The chapter Expressions and Abaku follows the Abaku® method of teaching developed by AL. 21 s.r.o. Detailed information about the method, the board game and its online version can be found at https://abaku.cz.

The author of the board game Animal Husbandry (Hodowla zwierzątek), mentioned on page 68, is Karol Borsuk. Its modern version Superfarmer is published by Granna Sp. z o.o. (https://granna.pl).

The author of the game Mastermind, mentioned on page 78, is Mordecai Meirowitz. MASTERMIND is a registered trademark owned by Hasbro, Inc. (https://hasbro.com).
(c) PM Books s.r.o., Praha 2023
$1^{\text {st }}$ edition

Dear reader,

In the pages that follow you can immerse yourself in the adventures of Ramsy the ram and Barky the wolf. They are good old chaps, who decided to become programmers. Actually, they didn't really have a choice, but they soon found out that it was a lot of fun. We would love for you to share their enthusiasm and enjoy discovering new things while reading the comic.

If you've already completed the first grade, you can start reading with confidence. It's quite possible that you won't understand everything the first time round, and that's perfectly fine. Our heroes also have to learn for themselves, and they sometimes find it hard. They have their guide, Mr. Lambda, who's there to nudge them in the right direction. If you can also find someone older to go through the text with you, it may be super helpful.

If you're a more mature reader, we have no doubt that you'll be able to go through the textbook independently. Some introductory chapters may seem to be too simple, but don't be fooled, they hide important messages and interesting examples. And why are we bringing mathematics into programming? Programming, as a skill and art, is related to mathematics on many levels, but above all in the way it forces a person to think and develop their abstraction ability. That's exactly what we're after.

Author

Dear parents, mentors, teachers, programmers, hackers, geeks and nerds of all kinds!
Thank you for your support, because it is most likely you who have made sure that your loved ones, eager for education, are in possession of our non-conformist textbook. Let us give you some tips on how to work with the book and additional materials.

The basic procedure for working with this book is to read through the chapter first. Every chapter usually introduces new concepts. At the end of each chapter there are a series of problems which need to be solved. Many of the problems are designed to be verified on a computer, which we highly recommend. We don't expect the reader to become an active programmer from the outset. Using the computer to verify solutions to problems by writing expressions of a particular programming language is, from our point of view, the simplest form of programming. Although we consider working with text to be key, we will gradually create interactive versions of the textbook examples, which will be available on our website (https://prog-mat.com).

Some of the tasks go beyond the relevant chapters and are intended to stimulate curiosity. It's not necessary for the reader to solve all the tasks. Likewise, it's OK if they make a mistake. The reader will eventually figure out most of the mistakes on their own as their horizon gradually expands, or whilst interacting with the computer itself.

The following typographic conventions are used in the text:
new concepts are written in bold,
highlighted passages are slanted,
mathematical expressions such as $8+5=13$ are written in the Computer Modern font,
programming language expressions such as $(=(+85) 13)$ are written in the Inconsolata font, the examples in the exercise parts are divided into 1 simple, 2 medium and $\mathbf{3}$ tricky.

at the foot of a hill with mildly radioactive subsoil,

As he grew, the ram became sturdy. His mates called him Ramsy.

The life of a ram is not usually that interesting, but this was quite an extraordinary specimen. Nobody knows how or when, but due to an inexplicable mutation, his body developed a fully functioning neocortex. And so it happened that our ungulate became highly intelligent.

But one day the routine life, which Ramsy loved so much, turned upside down. It all started with a harmless chat with his shepherd.

Hi, Ramsy! I just wanted to talk to you about a few things.
Actually,
I think you'd better sit down.

Good

morning, shepherd! It sounds like you have something serious to tell me. I'm all ears!

I think your job here is done. I have therefore decided to assign you to a new one.

What? Did I not do enough?
I assure you, the well-being of our sheep is my top priority.

Exactly! When it comes to sheep, you are the master of well-being. But, as you well know, almost all of our sheep are your offspring. So, to prevent more inbreeding, we have to do something, right?

Sorry, that's not exactly what I meant. We have to consider your future in light of the fact you're no spring chicken. I mean, let's face it, you're nearing retirement.

Retirement? I'm functioning at the top of my game! OK, so what do you suggest?

The firs \dagger
is to have a lavish feast. What do you think of making rogan josh?

Great! Please make sure there's plenty of garlic naan with extra garlic on top. I'm going to fill all four parts of my stomach! I don't know what this feast has to do with my job though, but who cares!

I have always been a loyal servant to you and now you want to serve me on a plate? What have I done to deserve this? You can't be serious! What is the next option?

I do mind! A lot! I must admit, I'm getting pretty scared. I'm not sure if I want to know the last option.

In order to make our farm operate more efficiently, I could hire you as a programmer.

In theory, you could continue in your current position. You could do all the usual antics with the sheep, but only as a wether, if you don't mind, of course.

They run on electricity, that's how they work. It's quite simple.

A programmer? What is that? Whatever it is, I must warn you, I know absolutely nothing about it, so you can't expec \dagger me to excel. But I do like the sound of the word "programmer" has a "ram" inside it.
 on electricity but it's not very entertaining, is it? And I'm not talking about the kind of entertainment you had when you were testing the conductivity of your hooves.

So, I can browse maps and do all sorts of fascinating things on your tablet thanks to programmers?

Exactly! Programmers create programs. Without programmers and their creations, all computers and smart gadgets would be useless. And one more thing: Next time, hooves off my tablet!

Alright. I'd also
like to make useful and entertaining programs, but I don't have a clue how. I need a mentor to guide me through it.

Ugh!

What kind of creature is that? An earthworm? A nematode? An upside-down letter " Y "? A slingshot missing its elastic straps? A snake suffering from spina bifida? And what are those horrible sneakers?

Lamb-duh? That is the most unusual lamb I've ever seen. Anyway, I keep wondering whether I'll ever become a good programmer.

Only time will tell, but your intelligence and love for mathematics stand you in good stead. I suggest you do a little revision and get a good night's sleep. Our programming journey begins tomorrow!

Complete the state diagrams. Look carefully at the direction of the arrow.

Fill in the missing numbers in the sum pyramids.

(3) Redraw the maze according to the example.

Fill in the lines and squares on the blank maze.

NeSted | I was |
| :--- |
| at first, but |
| atrathy like the |

Absolutely.
We quite often
need to express
that a condition
has been met
or not, don't we?
Can you give me an example?
For example, the condition: "Is the milking parlor fully occupied?" If the condition is true, the sheep at the entrance has to wait. If the condition is false, the sheep can enter.

I like playing
Mau-Mau.
A couple of days ago I was playing with the other rams and we were talking about sheep.

But it's interesting... When we were playing and it was my turn I said to myself: "Can I put down one of the cards I'm holding?" It was a condition, which was either true, or false. If true, I'd put a card down. If false, I'd have to take a card from the pack.

When you're done with your work, do whatever you want. Lock yourself in the basement and start gambling. Jus \dagger remember that the main game software tester here is me.

It's not really rocket science, but until recently we only created lists that purely contained numbers and symbols. I mean, when we wanted to write a list, we started with the left parenthesis and continued with the symbols and numbers and finally we ended it with the right parenthesis. Thus, in each list we wrote, there was actually one left parenthesis and one right parenthesis.

Sure,
an example of that is

$$
(+35)
$$

and so on. But I still don't know where you're going with this.

Agreed!

In this case (= $12(+345)$) is actually a three-subexpression list. The first subexpression is =, the second is the number 12 and the last is list (+ $34 \begin{array}{ll}\text {) . Moreover, the }\end{array}$ result true didn't surprise me one bit, because the number 12 is equal to the sum of the addends 3,4 and 5 .

Similarly (> (+ 34) 7) is also a three-subexpression list. The first subexpression is the symbol >, the second is the list (+34) and the last subexpression

I don't get it!

OK, for example, I can read your list

$(=12(+345))$
like this:
"Compare 12 with the sum of the numbers 3,4 and 5 ." That's so cool. I'm starting to love programming.
(1) Complete the symbolic expressions. Check they're correct in REPL.

$$
\begin{aligned}
& (=(+1314)(+11 \text { 16)) } \longmapsto \square \\
& (<\text { (+ } 3 \text { 14) (+ } 8 \text { 5)) } \longmapsto \\
& 8 \text { (+ } 2 \\
& \text { 5)) } \\
& \longmapsto \text { true } \\
& \text { (> (+ } 8 \text { 15) } \square \text {) } \mapsto \text { true } \\
& (<(+87) \square(+89)) \longmapsto \text { true } \\
& (\square(+74)(+47)) \longmapsto \text { false } \\
& (=(+79)(+5 \square)) \longmapsto \text { true } \\
& (=(+\square 5)(+26)) \longmapsto \text { true } \\
& (<\text { (+ } 2 \text { 8) }(+\square 3)) \longmapsto \text { true }
\end{aligned}
$$

(3) Which value is called secret?
(def secret \square)
(def x (+ secret 7))
(def y (+ secret x))
$\mathrm{y} \longmapsto 23$

Navigate through the maze so that you enter each square no more than once. Write down every route from \mathbf{A} to \mathbf{B}.

$(A)=B$
$(A)=C=B$
$(A)=C=B$
$(A)=C=B$

$$
\begin{aligned}
& (A)=O=(B) \\
& (A)=\mathrm{O}=(B) \\
& (A)=\mathrm{O}=\mathrm{B} \\
& \text { (A) }=\mathrm{O}=\mathrm{B} \\
& (A)=\mathrm{O}=\mathrm{O} \\
& (A)=\mathrm{O}=\mathrm{O}
\end{aligned}
$$

Sure, but I've had enough of arrow commands. Try to come up with something unusual.

I won't explain all the rules now, Ill just focus on the essentials. How about the token sequence
(8)(5) (1)(3)?

How about
Got it:

$$
\text { (1) } 7-(9)=8
$$ or $17-9=8$!

Or it could be
expressed as $17=9+8$.
This is essentially the basic
principle of Abaku. You get
tokens with numbers and
you lay them out on the
game board to form the
longest possible correct
arithmetic expressions.

This is an interesting game man. Can I join you?

Of course.

That day our three friends spent several hours playing the new game. At the end of a pleasantly spent afternoon, Mr. Lambda had an idea.

Spice? Like something you'd add to lamb's broth to heighten the flavor?

Let's combine the game with programming! I have a sequence of digits-your task is to construct a symbolic expression containing these
digits in the same order so that the expression is true.

So, Barky, I'll give you the tokens (1), (2), (6) and (8). Can you create an expression for me?

Piece of cake: (= (* 2 8) 16)

If we get tired of simple expressions, we can try and find more complex ones. Ramsy, what would you do with the tokens (2). (6), (7) and (8)?

I don't want to underestimate you my friend, but there's no way you can solve that.

The ram surprises us yet again! I can't let him put me to shame...
I've got it! But just to be sure, I'll enter my solution into REPL and make sure it's correct:
$\left(=\left(\begin{array}{lll}* & 7 & 2\end{array}\right)(+68)\right) \longmapsto$ true
I have to say I really like Abaku.

I've got it! But just
my solution into REP
7 2) $(+6$

One unrelated side note.
I'm sure you've both noticed that our expressions are getting longer and longer. In these cases, we try to divide them into several lines. No need to worry; we can separate the subexpression in lists not with spaces alone, but also with new lines.

For example, instead of a long noodle (= (* 7 2) (+ 6 8)), as you wrote it, Barky, you split the expression into two lines:

Sir! No cards, sir! We've discovered a game with much lower a degree of random chance, sir! You can apply your famous logical thinking to it, sir!

Oh my, someone's stomach must really be rumbling and they clearly want the master to give them a large portion for dinner.

1. Fill the values from the tokens in the correct order so that all the given symbolic expressions are true.

(1)(4) 5 (9)
$(=(-\square \square \square) \square)$

$$
\begin{gathered}
2399 \\
(=(* \square \square) \square \square)
\end{gathered}
$$

2 Use the tokens (3). (5) and (8) to fill in the expressions. Find all the solutions.
(= (+ $\square \square$) \square) \longmapsto true
($=(+\square \square) \square$) \rightarrow true

$$
\text { (= (- } \square \square) \square) \mapsto \text { true }
$$

$$
\text { (= (- } \square \square) \square) ~ \mapsto \text { true }
$$

$$
(=\square(+\square \square)) \mapsto \text { true }
$$

$$
(=\square(+\square \square)) \longmapsto \text { true }
$$

$$
(=\square(-\square \square) \longmapsto \text { true }
$$

$$
(=\square(-\square \square)) \longmapsto \text { true }
$$

3 Use the numbers from the tokens and form true symbolic expressions according to the pattern.
(1) (2) 4 6) $(=(+168) 24) \longmapsto$ true
(2) 2 (5) 7
(3) (3) 5 (8
(1) 2 (3) 7
(4) 4) 59

Which groups of tokens will you use to make a true expression?

(1)	2	6	8	\square
(2)	4	6	7	\square
3	7	8	9	\square
1	3	6	8	\square
(1)	2	3	4	\square

Construct a true expression from the tokens (1). (2), (4) and (9).

How's your mental health, Ramsy? All OK?

Don't worry!
I'm in fine shape! Although I'm a little sad that we're slowly coming to the end. Especially now that we've discovered such a wonderful thing like vectors. Listen carefully to the sheep in the pen, they don't want to talk about anything else!

Vectors are really fun! I was quite relieved to find that we write them much like lists. It's nice to be able to relate it to something I already know.

You're right, you could say it's just that different parentheses are used-square instead of round. But that would be too simplistic and a bit misleading. From the meaning point of view, lists and vectors are completely different!

 vectors store data. Each vector is like a bag that you can stuff data into for later use.

Sure! Ramsy captured

 it well. At this point, we write lists to make programs. All those wonderful function applications that make things happen are initiated during the evaluation of lists present in our program.

But I don't

really like the analogy with the bag. For me, things usually get mixed up in the bag, whereas the data in the vector is kept pretty much in the same order I put it in.

Come on you two, stop teasing each other, my diaphragm wouldn'† be able to handle it!

Don't worry, we're professionals, always constructive, never emotional. Of course, I'm not counting the situations where I want to bite someone because I've been set up and robbed blind during a game.

Well OK... But back to the notion of order.
Vectors are really structures in which values are stored in a specific order. For example,

$\left[\begin{array}{lll}3 & 5 & 8\end{array}\right]$ and $\left[\begin{array}{lll}3 & 8 & 5\end{array}\right]$

are two different vectors-they contain the same values, but in a different order!

Correct! Do
you still remember commas? When we write vectors, we can separate their elements using spaces, new lines, and any number of commas! So it works similarly to lists.

As a worldly

border collie, let me tell you, I like the notation with commas. I saw something similar in an advanced math textbook.

$[35,8] \quad[, 3$,
$[3,5,8] \quad,$,5 ,
$[3,, 5,, \quad, 8]$

A three-element vector containing the numbers three, five, and eight in that order can be written in many ways. The clearest of them are $\left[\begin{array}{ll}3 & 5\end{array}\right]$ and $[3,5,8]$.

Other than numbers, what would you like to put in them?

Let's recap what we know about atomic data. In addition to numbers, we already know truth values and keywords.
It would be natural to create vectors of truth values and vectors of keywords. Doesn't that sound interesting?

You haven't made me very happy! I see the world only in yellow and blue! Also, I don't know your game at all!

1 Be the codemaster! Complete the feedback for each pair consisting of the code (top) and the guess (bottom).

\% \square°	Q (1) ${ }^{\text {a }}$	$\cdots \bigcirc \bigcirc$	
$\bigcirc \bigcirc \bigcirc$	\mathbb{O}	O10	
(3)(2)(5)(1)	(7)(3)(1)(4)	$\left[\begin{array}{llll}2 & 8 & 1\end{array}\right.$	648
(8)(2)(5)(3) \square	(1)(4)(3) 7) \square	$\left[\begin{array}{lllll}8 & 3 & 1 & 5\end{array}\right]$	5 8 31]

2 Try to break codes in the following situations. Each pattern can appear only once in the code.

3 Try to break codes in the following situations. Each pattern can appear only once in the code.
(3) (1) (8) 4$) \circ$
(8) (7) (4) \circ
(6) (5) (7) 8 -
(5) (2) (1) (3) \circ
(5) (8) (4) \circ
(3) (8) 7 -
(3)(5) (2) 6
(3) (6) (1) 2$) \circ$
(5) (3) (2) 8 ค
(1) (8) 25
(4) (3) 6 (8
(1) (2) (5) $\circ \circ$
(6) (2) (4) 8
(1) (6) (4) $8 \circ$
(1) 2 (6) 8
(5) (3) (2) 7
0000
0000
0000
$\bigcirc \bigcirc \bigcirc$

The same task again. This time the guesses are represented by vectors of numbers.

$\left[\begin{array}{lllll}3 & 4 & 7 & 1\end{array}\right] \cdot$		$\left[\begin{array}{lllll}2 & 5 & 4 & 8\end{array}\right]$ \%	[3
$\left[\begin{array}{llll}6 & 5 & 7\end{array}\right]$ ••	$\left[\begin{array}{llll}2 & 4 & 5\end{array}\right]$ ¢	$\left[\begin{array}{llll}8 & 5 & 4 & 1\end{array}\right] \cdot \bullet$	$\left[\begin{array}{llll}1 & 6 & 4\end{array}\right]$ ¢0
	$\left[\begin{array}{llll}4 & 6 & 3 & 7\end{array}\right] 0$		$\left[\begin{array}{lllll}3 & 2 & 7 & 4\end{array}\right] \%$
[2 $\left.\begin{array}{llll}5 & 8 & 1\end{array}\right]$ oo	$\left.\begin{array}{lllll}3 & 6 & 1 & 5\end{array}\right] \boldsymbol{\otimes}$	$\left[\begin{array}{lllll}7 & 5 & 4 & 2\end{array}\right]$ \%	$\left[\begin{array}{lllll}3 & 7 & 2 & 1\end{array}\right]$ ••
]	[[]	[]

$\mathrm{NO} \dagger \mathrm{e} \mathrm{s}$

Table of Contents

Come and Meet Ramsy! 4 What is REPL? 7
An Unexpected Meeting 10
Numbers and Symbols 13 Lists 16
A Mistake Has Been Made 19
New Names 22
True or False? 25
Nested Lists 28
Multiplication 31
Subtraction 34

Functions, Applications and Arguments 37
Expressions and Abaku 40
As Clearly as Possible! 43
Parts of a Whole 46
The Same Problem 49
Negation 52
Conjunction 55
Odd or Even 58
Back to Conjunctions 61
Disjunction 64
Keywords 67
Data Structures 70
Vectors 73 Order 76

Programming and Mathematics A1

Author: Vilém Vychodil
Original title: Programování a matematika A1
Original publisher: PM Books s.r.o.
Translation: Nicola Catherine Fořtová, Vilém Vychodil
Illustrations: Monika Klimková
Typesetting and graphic design: Vilém Vychodil
Published by: PM Books s.r.o., Dittrichova 346/4, Nové Město, 12000 Praha 2, CZ (https://prog-mat.com)
Print: Lulu Press, Inc., 627 Davis Drive Suite 300, Morrisville, NC 27560, USA (https://lulu.com)
First published in: 2023

Now，to the main point： What have we actually learnt？

We＇ve also learnt how to use functions．We don＇t know how to create them yet，but we＇ll learn that in time．I like the fact that we＇ve also picked up some of the technical terminology．I have to admit that I usually don＇t remember new terms the first time， but when I encounter them more often，they start to seem obvious．I love it when I can express myself in a nice professional way，it makes me a better wolf．

If anything really caught my eye， it was the vectors． I feel in my bones that you can do a lot of interesting things with them．Are we going to keep doing that？

We had close

encounters with numbers， symbols，truth values，lists and vectors．

in

Farewell for the moment！ If you＇ve enjoyed working with us， don＇t forget to mention us to your friends！

